
The path to an increase in MINOS computing

Ryan Patterson

July 28, 2008

1 The situation

At present MINOS analyzers have access to forty-one local computing cores
through Condor, thirty-six FNALU batch cores, sixty-four MINOS grid cores
(with AFS access), and a few hundred general purpose grid cores (without
AFS access).1 Discussions at Ely concluded that a ten-fold increase in avail-
able computing power is needed if we are to relieve current analysis bottle-
necks in any consequential way. FNAL already has this level of computing
power available. Figure 1 shows that of the 13k cores available on FermiGrid,
an average of 3k sit idle. (This number will vary with other collaborations’
usage.) We are encouraged to consume these idle cycles, but there are hur-
dles we must first clear. This document outlines the issues as I currently
understand them and concludes with a call for volunteers to get us through
them.

2 What needs doing

The necessary steps can be grouped into the three quasi-independent areas
listed below. One volunteer per area (maybe two for the last area) working
nearly full time for 4-12 weeks is likely the optimal arrangement. Once
folks are identified, I propose we hold a weekly phone meeting with MINOS
computing experts to ensure that things stay on track.

1The last set has a restricted user list, in part because of the lack of AFS access and
the cumbersome registration process.

1



Figure 1: FermiGrid statistics from sometime this spring.

2.1 dCache

Much of MINOS processing involves pulling files from dCache, the caching
system that sits between the end user and Enstore (the FNAL tape sys-
tem). Two main upgrades are needed before dCache can handle thousands
of simultaneous jobs.

First, the number of files open in dCache is limited by the number of
dCache “doors”. There are just two unsecured doors (ports 24125 and 24136),
each of which can support a few hundred files. The dCache administrators
need to configure several more doors. Our framework code needs to know
which doors are available and should distribute the load between doors.

Second, end users can access dCache content in two distinct ways: (1)
copy files from dCache to a local area and then run over the local copy, or
(2) have the job (usually loon) establish a connection to dCache directly and

2



process over the streamed content. The latter method ties up a dCache slot
for the duration of the job, making the number of dCache slots (rather than
the number of cores) the limiting factor. To the extent that dCache I/O time
is small compared to CPU time, the solution is to use the “copy, then run”
sequence always.

Thus, one needs to modify the loon dCache code such that the end user
thinks the files are streaming when in fact they are being copied locally
first. As part of this, one should contemplate typical file sizes and temporary
storage areas. (For example, is /tmp large enough, or must we set aside
something else? What about cleanup? Will a multi-file job have to progress
in steps: copy, run, copy, run, etc.?)

2.2 Database

It is likely that a single database server cannot accommodate the number of
connections needed by thousands of jobs. Step one is to determine how many
simultaneous “typical” connections the server can handle. One approach is
to install a clone database server on an available machine (perhaps one of
the minosXX machines) and test to failure under various conditions.

Assuming the capacity of a single server would indeed be limiting, the
next step would be to design a multi-server load-sharing solution. One would
implement a turnkey procedure for creating and maintaining database clones.
Once the clones are ready, job setup scripts (e.g., setup minos) would pick
a clone at random when setting database environment variables. (Load-
dependent database assignment would be better, but random is easier to
implement and should be okay at first.) Clones could be added anytime the
database becomes the limiting factor (e.g., when new grid cores are made
available or when more taxing code is written.)

Along with scaling server capacity, it may become necessary to review
database connection hygiene in the MINOS code. Database connections
should be held open for as long as it takes to obtain the necessary content,
and no longer. Relatedly, multiple sequential database calls should, when
possible, be converted into a single up-front call. (loon has some ability to
deal with the latter case, but it may need updating as analyses progress.) It
would also be nice to have a system that monitors the health of the database
servers and looks for problem jobs/connections.

3



2.3 Everything else

This area would likely benefit from more than one full time worker, as the
tasks are smaller but manifold. A sampling (the list will likely expand) –

• Getting jobs to other grid areas. A system called glideinWMS is used
to get each job submitted from minos25 over to the farm node that
actually runs the job. This system may need configuring if we are to
submit to other FermiGrid nodes.

• Condor user interface. Regardless of the behind-the-scenes picture,
end users should have a single job submission paradigm. Ideally, this
would be reduced to something as simple as “minos jobsub myexec
<myargs>”. Condor access on all MINOS machines would also be
helpful (rather than just on minos25).

• Executables. Without AFS access2, minossoft releases (etc.) are not
available at the farm nodes. This requires a solution. A promising tool
used by CDF and BaBar is Parrot, which takes over file I/O transpar-
ently, shuttling data through available channels (e.g., HTTP). What-
ever the scheme, it needs to be integrated into the MINOS framework.

• Parrot verification. If Parrot is the solution to the above issue, several
of its features (e.g., local sharing of the file cache) must be tested on
realistic analysis jobs.

• Queues, priorities. Further down the line, we may have need for multi-
ple MINOS queues (e.g, test, short, long) and a more complex priority
system.

• Job utilities. One cannot expect thousands of jobs to run without
failures. Tools for seamless job recovery will be useful.

• Administrative. As the system comes to life, we will want good mon-
itoring, accounting, and testing tools (in most cases already available,
if unfamiliar.) We would also benefit from an Integration Condor sys-
tem on which to test new Condor releases and configuration changes
without affecting end users.

2AFS will not scale to the desired level.

4



3 Want to help?

The effort outlined here is large but certainly doable. What is needed from
the collaboration:

• A volunteer for dCache issues.

• A volunteer for database issues.

• An additional volunteer (along with me) for everything else.

Volunteers are hereby requested. Since experts tend to have many constraints
on their time, I foresee mostly novice volunteers (who will interact regularly
with experts). However, if an expert feels (s)he can knock off a task or two,
please do!

Email me if you’d like to take on one of these tasks.

4 Design suggestions

To everyone else: Now’s the best time to make requests for the future of
MINOS computing. Is there a specific interface quirk you’d like to avoid or
a feature you think we need? Let me know what you’d like the system to do,
and we can try to make it happen.

5 Closing note

Many thanks to Art Kreymer for laying out the MINOS computing situation
for me. This document is mostly my retelling of what I learned from him.

5


